网站首页 > 资讯频道 > 正文阅读
本次联合国政府间气候变化专门委员会(IPCC)气候科学报告《气候变化2021:自然科学基础》单独设立了“气候变化中的极端天气事件”一章,首次凸显极端天气事件是全球变暖的重要威胁。
相比于第五次评估报告,此次报告以更多的证据和更高的信度,指出人类活动引起的气候变化已经影响了全球各个地区的极端天气与气候事件,未来任何的持续增暖都会引起愈加频繁和严重的极端事件。
历史变化:极端事件风险上升
报告指出,自20世纪50年代以来,全球绝大部分地区极端高温事件的频率和强度在增加,极端低温事件的频率和强度在下降。受区域陆气互馈过程影响,如土壤湿度以及冰雪覆被与气温的互馈,内陆半干旱和干旱地区以及冰雪覆盖的高纬度和高海拔地区是极端温度变化最剧烈的区域。城市热岛效应使城市遭受更多更强的高温热浪威胁,1980年以来,全球海洋热浪的数量增加了近一倍。
全球气温每上升1℃,大气水汽增加约7%,从而导致极端降水增加。除了增强的水汽作用,与环流相关的动力过程改变也会影响极端降水,且其自然波动更剧烈。报告显示,1950年以来,极端降水在大部分有观测资料的区域呈增加趋势。由于极端降水增加的速度整体快于平均降水,导致降水的年内变率增加,从而给区域水资源管理带来挑战。
极端降水增加是否诱发更多流域洪水,还取决于流域水文状况和水资源管理策略等非气候要素。就全球整体而言,有关流域洪水的变化趋势仍缺少结论性共识,在不同地区呈现出或增或减的差异性。城市洪涝和山洪等骤发性洪水与极端降水关联紧密,但对此仍需更广泛的研究。
气候变暖推高了大气的蒸发潜力,从而影响一个地区可获得的净水资源量。报告指出,农业和生态干旱在遍布全球所有大洲的多个地区都有增加,包括我国所处的东亚地区;仅个别地区出现了农业和生态干旱缓解的状况。
此次报告首次将复合极端事件纳入评估对象,复合极端事件被概括为造成社会或环境影响的不同驱动因子组合发生的状况。常见的复合极端事件大体可以分为四类:前期影响型,例如春季干旱会加剧夏季热浪;同时发生型,如酷热干旱事件;接连发生型,如持续的日间和夜间热浪事件;空间关联型,即空间上具有共同影响效应的多个事件。
报告显示,1950年以来复合极端事件在全球多个地区变得更加频繁,包括酷热干旱复合事件,诱发森林火灾的综合天气条件,以及河口及海岸带常见的复合洪水事件等。
人类影响:增加极端事件发生
自IPCC第五次评估报告以来,气候变化检测归因科学取得新进展,可以更清楚地认识人类活动与极端天气事件之间的联系。主要进展包括检测归因多模式比较计划(DAMIP)的实施,为细分不同人类活动因子的影响提供了大数据资源;出现了改进的“最优指纹”趋势归因方法,可以更准确地考虑极端气候变量特有的统计特征;涌现了多种极端事件归因方法以及大量有关全球各地极端事件个例的归因研究。
得益于此,报告以更高的信度指出,全球大部分地区极端高温和极端低温变化的主要驱动力来自于工业革命以来人类活动排放的温室气体,同时也首次提出,如果没有人类活动的影响,全球多地遭受的异常极端甚至突破历史纪录的高温事件几乎不可能发生。
在美洲、欧洲和亚洲,几乎可以确定人类活动引起了极端降水的增加。而在更小的区域尺度上,人类活动影响极端降水的证据还相对有限。且极端降水的自然波动大,当前模式模拟极端降水的不确定性大,限制了归因结论的可靠性。总体而言,极端降水的归因信度相对极端温度较低。
报告指出,人类活动可能是导致全球多个区域遭受更加频繁和严重的农业和生态干旱的主要原因,人为气候变暖可能导致全球水文干旱整体加剧,同时人类取用水等也是重要的驱动因素。由于干旱的观测样本比降水更少,且干旱在很大程度上反映的是降水亏缺,因此干旱归因也受限于模式对降水的模拟技巧,归因结论的信度总体也较低。
此外,洪水和台风的归因受观测资料和模式性能的制约更加严重,其中洪水还进一步受当前大尺度水文模型有限的模拟精度的制约,有关二者的归因信度也普遍较低。但是,针对飓风哈维等典型热带气旋个例的归因结果显示,人类活动增加了飓风/台风降水量。
关于未来:复合极端事件加剧
2015年《巴黎协定》提出到本世纪末将全球平均温升控制在工业化前水平的2℃以内,并努力追求1.5℃温控目标,所以IPCC报告增加了基于温升水平的气候变化评估。本次报告以高信度强调,未来每0.5℃的增暖都会显著改变全球大部分地区极端天气与气候事件的频率和强度,包括极端温度、极端降水、台风、干旱等。
报告指出,未来全球绝大部分有人口居住的地方都将出现更多、更强、更持久的极端高温。即使最终实现1.5℃温控目标,也无法完全避免这种风险。据报告,1850-1900年间平均50年才发生1次的极端高温事件,在当前气候状态下约每10年发生1次;实现1.5℃温控目标,约每5年发生1次;而若放任全球升温至4℃,则每年都会遭遇至少1次同等严重的高温。以上是对全球平均状况的预估,部分地区的形势会更加严峻。
未来会出现更多更强的极端降水。平均而言,极端降水强度随全球变暖的增幅约为7%/℃,但会根据增暖以及环流变化会产生一定的区域差异。与极端降水关联紧密的城市雨洪和山洪等骤发性洪涝灾害也将变得更加频繁和严重,且流域洪水在不同地区增加的区域将多于减少的区域。未来总台风频率可能略微下降或保持不变,但强台风的比率会升高,风速也会增加。
随着变暖持续,未来更多地区将会遭遇更频繁且严重的干旱。当温升在1.5-2.0℃时,全球多个地区会遭遇更加严重的农业和生态干旱;而当气候变暖至4.0℃时,全球一半地区将遭遇更严重的农业和生态干旱。水文干旱在一些地区也将变得更加严重,干旱加剧也会影响陆地的碳汇功能。
未来也会有更多的区域遭遇更多的复合极端事件,包括持续增多的酷热干旱复合事件,更容易诱发野火的天气环境,河口海岸地区将面临增多的极端降水、河道洪水、海平面上升、风暴潮等。
值得警惕的是,未来极端温度、极端降水、干旱等极端事件表现出依赖于事件极端程度的非均匀变化特征,这种非均匀变化会导致未来极端事件变得更加反复无常;同时,“小概率高影响”事件将更容易出现,从而大大增加防范极端气候风险的挑战。(华东师范大学地理科学学院研究员 李超)